This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185286 Triangle T(n,k) is the number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at k 3
 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 5, 6, 3, 3, 3, 1, 11, 11, 13, 17, 13, 7, 6, 4, 1, 24, 41, 52, 44, 43, 40, 25, 14, 10, 5, 1, 93, 120, 152, 176, 161, 126, 107, 80, 45, 25, 15, 6, 1, 272, 421, 550, 559, 561, 524, 412, 303, 227, 146, 77, 41, 21, 7, 1, 971, 1381, 1813, 2056, 2045, 1835, 1615, 1309, 938, 648, 435, 251, 126, 63, 28, 8, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Equivalently, the number of paths from (0,0) to (n,k) using steps of the form (1,2),(1,1),(1,-1) or (1,-2) and staying on or above the x-axis. It appears that A047002 gives the row sums of this triangle. LINKS Robert Israel, Table of n, a(n) for n = 0..10200 EXAMPLE The table starts: 1 0,1,1 2,1,1,2,1 2,5,6,3,3,3,1 MAPLE T:= proc(n, k) option remember;   if k < 0 or k > 2*n then return 0 fi;   procname(n-1, k-2)+procname(n-1, k-1)+procname(n-1, k+1)+procname(n-1, k+2) end proc: T(0, 0):= 1: for nn from 0 to 10 do   seq(T(nn, k), k=0..2*nn) od; # Robert Israel, Dec 19 2017 PROG (PARI) flip(v)=vector(#v, i, v[#v+1-i]) ar(n)={local(p); p=1; for(k=1, n, p*=1+x+x^3+x^4; p=(p-polcoeff(p, 0)-polcoeff(p, 1)*x)/x^2); flip(Vec(p))} CROSSREFS Columns k=0..2 are A187430, A055113, A296619. Cf. A005408(row lengths), A047002(apparently row sums). Sequence in context: A049824 A133087 A153919 * A153905 A319093 A228726 Adjacent sequences:  A185283 A185284 A185285 * A185287 A185288 A185289 KEYWORD nonn,tabf AUTHOR Franklin T. Adams-Watters, Mar 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 19:29 EDT 2019. Contains 323576 sequences. (Running on oeis4.)