OFFSET
1,1
COMMENTS
Table starts
...4...6...9..15..25..45..81.153.289..561.1089.2145.4225.8385.16641.33153.66049
...6...8..11..17..27..47..83.155.291..563.1091.2147.4227.8387.16643.33155.66051
...9..11..14..20..30..50..86.158.294..566.1094.2150.4230.8390.16646.33158.66054
..15..17..20..26..36..56..92.164.300..572.1100.2156.4236.8396.16652.33164.66060
..25..27..30..36..46..66.102.174.310..582.1110.2166.4246.8406.16662.33174.66070
..45..47..50..56..66..86.122.194.330..602.1130.2186.4266.8426.16682.33194.66090
..81..83..86..92.102.122.158.230.366..638.1166.2222.4302.8462.16718.33230.66126
.153.155.158.164.174.194.230.302.438..710.1238.2294.4374.8534.16790.33302.66198
.289.291.294.300.310.330.366.438.574..846.1374.2430.4510.8670.16926.33438.66334
.561.563.566.572.582.602.638.710.846.1118.1646.2702.4782.8942.17198.33710.66606
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..683
FORMULA
Empirical, for every row and column: a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4).
From Andrew Howroyd, Mar 09 2024: (Start)
The above empirical formula is correct.
T(n,k) = -2 + 2^(n-1) + 2^(k-1) + 2^(floor((n-1)/2)) + 2^(floor(n/2)) + 2^(floor((k-1)/2)) + 2^(floor(k/2)). (End)
EXAMPLE
Some solutions for 6 X 5
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....1..0..1..0..1....0..0..1..1..0....0..0..1..0..1
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1
..0..1..0..0..1....1..1..1..1..1....1..1..0..0..1....1..1..0..1..0
..1..0..1..1..0....0..1..0..1..0....0..0..1..1..0....0..0..1..0..1
PROG
(PARI) T(n, k) = my(m=2, b=t->2^t-1); m^2 + (m-1)^2*(b(n-1) + b(k-1)) + (m-1)*(b((n-1)\2) + b(n\2) + b((k-1)\2) + b(k\2)) \\ Andrew Howroyd, Mar 09 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 08 2011
STATUS
approved