login
A199172
Decimal expansion of x<0 satisfying x^2+x*cos(x)=2.
3
1, 4, 6, 6, 9, 7, 8, 3, 0, 5, 3, 9, 7, 1, 2, 3, 5, 6, 8, 4, 1, 9, 8, 1, 4, 1, 8, 4, 7, 8, 0, 4, 4, 4, 3, 1, 8, 9, 1, 2, 0, 2, 2, 5, 9, 1, 2, 6, 4, 3, 2, 3, 3, 8, 6, 6, 0, 8, 0, 5, 7, 9, 9, 8, 2, 4, 7, 9, 0, 7, 3, 7, 0, 7, 2, 7, 4, 7, 7, 3, 6, 9, 5, 1, 1, 2, 1, 2, 2, 2, 7, 9, 9, 9, 9, 4, 2, 4, 8
OFFSET
1,2
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.4669783053971235684198141847804443...
positive: 1.2766713679407605540915074904412102...
MATHEMATICA
a = 1; b = 1; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A199172 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.27, .28}, WorkingPrecision -> 110]
RealDigits[r] (* A199173 *)
CROSSREFS
Cf. A199170.
Sequence in context: A247677 A306811 A201775 * A323674 A183986 A160995
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved