OFFSET
1,1
COMMENTS
Column 2 of A183986.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (3, 0, -6, 4).
FORMULA
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 07 2018: (Start)
G.f.: x*(6 - 10*x - 13*x^2 + 20*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (3*2^(n/2) + 2^n + 6) / 2 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 3 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.
EXAMPLE
Some solutions for 5 X 3.
..1..0..1....1..0..1....1..0..1....1..0..1....0..1..0....1..0..1....1..0..1
..0..1..0....1..1..1....0..1..0....0..0..0....0..1..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
..0..1..0....1..1..1....1..0..1....0..0..0....1..0..1....0..1..0....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 08 2011
STATUS
approved