login
A183979
1/4 the number of (n+1) X 3 binary arrays with all 2 X 2 subblock sums the same.
2
6, 8, 11, 17, 27, 47, 83, 155, 291, 563, 1091, 2147, 4227, 8387, 16643, 33155, 66051, 131843, 263171, 525827, 1050627, 2100227, 4198403, 8394755, 16785411, 33566723, 67125251, 134242307, 268468227, 536920067, 1073807363, 2147581955, 4295098371
OFFSET
1,1
COMMENTS
Column 2 of A183986.
FORMULA
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 07 2018: (Start)
G.f.: x*(6 - 10*x - 13*x^2 + 20*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (3*2^(n/2) + 2^n + 6) / 2 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 3 for n odd.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.
EXAMPLE
Some solutions for 5 X 3.
..1..0..1....1..0..1....1..0..1....1..0..1....0..1..0....1..0..1....1..0..1
..0..1..0....1..1..1....0..1..0....0..0..0....0..1..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
..0..1..0....1..1..1....1..0..1....0..0..0....1..0..1....0..1..0....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
CROSSREFS
Cf. A183986.
Sequence in context: A183208 A048586 A080824 * A100602 A222175 A350767
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 08 2011
STATUS
approved