login
A183218
Complement of the hexagonal numbers.
3
2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
OFFSET
1,1
LINKS
FORMULA
a(n)=n+Floor[1/2+(n/2)^(1/2)].
EXAMPLE
Hexagonal numbers: (1,6,15,28,45,...) = A000384,
so that A183218=(2,3,4,5,7,8,9,...,14,16,...,27,29,...).
MATHEMATICA
Table[n+Floor[1/2+(n/2)^(1/2)], {n, 100}]
Module[{nn=110}, Complement[Range[nn], PolygonalNumber[6, Range[ Floor[ (1+Sqrt[ 1+8nn])/4]]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
PROG
(Python)
from math import isqrt
def A183218(n): return n+(isqrt(n<<1)+1>>1) # Chai Wah Wu, Aug 26 2024
CROSSREFS
Cf. A000384.
Sequence in context: A052414 A095410 A022293 * A071000 A088451 A047595
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2011
STATUS
approved