login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183209 Tree generated by floor(3n/2): a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = floor((3*a(n+1))/2). 7
1, 2, 3, 5, 4, 8, 7, 14, 6, 11, 12, 23, 10, 20, 21, 41, 9, 17, 16, 32, 18, 35, 34, 68, 15, 29, 30, 59, 31, 62, 61, 122, 13, 26, 25, 50, 24, 47, 48, 95, 27, 53, 52, 104, 51, 101, 102, 203, 22, 44, 43, 86, 45, 89, 88, 176, 46, 92, 93, 185, 91, 182, 183, 365, 19, 38, 39, 77, 37 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A permutation of the positive integers. See the comment at A183079. Leftmost branch of tree is essentially A061418. Rightmost: A007051.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..8192; the first 14 levels of the tree, flattened

Index entries for sequences that are permutations of the natural numbers

FORMULA

Let L(n)=floor(3n/2).

Let U(n)=3n-1.  U is the complement of L.

The tree-array T(n,k) is then given by rows:

T(0,0)=1; T(1,0)=2;

T(n,2j)=L(T(n-1),j);

T(n,2j+1)=U(T(n-1),j);

for j=0,1,...,2^(n-1)-1, n>=2.

From Antti Karttunen, Jan 26 2015: (Start)

a(1) = 1, a(2n) = (3*a(n))-1, a(2n+1) = A032766(a(n+1)) = floor((3*a(n+1))/2).

Other identities:

a(2^n) = A007051(n) for all n >= 0. [A property shared with A048673 and A254103.]

(End)

EXAMPLE

First levels of the tree:

......................1

......................2

............3..................5

..........4...8..............7...14

MAPLE

f:= proc(n) option remember;

  if n::even then 3*procname(n/2)-1

  else floor(3*procname((n+1)/2)/2)

  fi

end proc:

f(1):= 1:

seq(f(n), n=1..100); # Robert Israel, Jan 26 2015

MATHEMATICA

a[1]=1; a[n_] := a[n] = If[EvenQ[n], 3a[n/2]-1, Floor[3a[(n+1)/2]/2] ]; Array[a, 100] (* Jean-Fran├žois Alcover, Feb 02 2018 *)

PROG

(Scheme, with memoizing macro definec)

(definec (A183209 n) (cond ((<= n 1) n) ((even? n) (A016789 (- (A183209 (/ n 2)) 1))) (else (A032766 (A183209 (/ (+ n 1) 2))))))

;; Antti Karttunen, Jan 26 2015

(Haskell)

import Data.List (transpose)

a183209 n k = a183209_tabf !! (n-1) !! (k-1)

a183209_row n = a183209_tabf !! (n-1)

a183209_tabf = [1] : iterate (\xs -> concat $

   transpose [map a032766 xs, map (a016789 . subtract 1) xs]) [2]

a183209_list = concat a183209_tabf

-- Reinhard Zumkeller, Jun 27 2015

(Python)

def a(n):

    if n==1: return 1

    if n%2==0: return 3*a(n/2) - 1

    else: return int((3*a((n - 1)/2 + 1))/2)

print [a(n) for n in xrange(1, 101)] # Indranil Ghosh, Jun 06 2017

CROSSREFS

Cf. A183079, A007051, A016789, A183207, A183208, A032766, A191450.

Similar permutations: A048673, A254103.

Inverse permutation: A259431.

Sequence in context: A075157 A183080 A183082 * A046708 A185728 A285492

Adjacent sequences:  A183206 A183207 A183208 * A183210 A183211 A183212

KEYWORD

nonn,tabf,look

AUTHOR

Clark Kimberling, Dec 30 2010

EXTENSIONS

Formula to the name-field added by Antti Karttunen, Jan 26 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:14 EDT 2019. Contains 328145 sequences. (Running on oeis4.)