login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182925 Generalized vertical Bell numbers of order 3. 4
1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 4 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..168

P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, (2010).

K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp,

Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).

FORMULA

a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3.

Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x).

MAPLE

A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1, n+1, n+1], [1, 1, 1], x);

round(evalf(subs(x=1, %), 64)) end; seq(A182925(i), i=0..11);

MATHEMATICA

u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-Fran├žois Alcover, Nov 22 2012, after Maple *)

CROSSREFS

Cf. A090210, A002720, A069948, A182924.

Sequence in context: A249964 A281801 A208000 * A208020 A205423 A263600

Adjacent sequences:  A182922 A182923 A182924 * A182926 A182927 A182928

KEYWORD

nonn

AUTHOR

Peter Luschny, Mar 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 07:45 EST 2020. Contains 332199 sequences. (Running on oeis4.)