login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182925
Generalized vertical Bell numbers of order 3.
4
1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815
OFFSET
0,2
COMMENTS
The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 4 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.
LINKS
P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, (2010).
K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp,
FORMULA
a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3.
Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x).
MAPLE
A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1, n+1, n+1], [1, 1, 1], x);
round(evalf(subs(x=1, %), 64)) end; seq(A182925(i), i=0..11);
MATHEMATICA
u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 22 2012, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 28 2011
STATUS
approved