login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090210 Triangle of certain generalized Bell numbers. 11
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) and
S(n,k) = k! [x^k] taylor(B_{n}(x)), where [x^k] denotes the
coefficient of x^k in the Taylor series for B_{n}(x).
Then S(n,k) (n>0, k>=0) is the square array representation of the triangle.
To illustrate the cross-references of T(n,k) when written as a square array.
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A020556: 1, 1, 7, 87, 1657, 43833, 1515903, ...
3: A069223: 1, 1, 34, 2971, 513559, 149670844, ...
4: A071379: 1, 1, 209, 163121, 326922081, ...
5: A090209: 1, 1, 1546, 12962661, 363303011071,...
6: ... 1, 1, 13327, 1395857215, 637056434385865,...
Note that the sequence T(0,k) is not included in the data.
- Peter Luschny, Mar 27 2011
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem.
W. Lang, First 8 rows.
K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp,Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
FORMULA
a(n, m)= Bell(m;n-(m-1)), n>= m-1 >=0, with Bell(m;k) := sum(S2(m;k, p), p=m..m*k), where S2(m;k, p) := (((-1)^p)/p!)*sum(((-1)^r)*binomial(p, r)*fallfac(p, r)^k, r=m..p); with fallfac(n, m) := A008279(n, m) (falling factorials) and m<=p<=k*m, k>=1, m=1, 2, ..., else 0. From eqs.(6) with r=s->m and eq.(19) with S_{r, r}(n, k)-> S2(r;n, k) of the Blasiak et al. reference.
a(n, m)= (sum(fallfac(k, m)^(n-(m-1)), k=m..infinity))/exp(1), n>= m-1 >=0, else 0. From eq.(26) with r->m of the Schork reference which is rewritten eq.(11) of the original Blasiak et al. reference.
E.g.f. m-th column (no leading zeros): (sum((exp(fallfac(k, m)*x))/k!, k=m..infinity) + A000522(m)/m!)/exp(1). Rewritten from the top of p. 4656 of the Schork reference.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
MAPLE
A090210_AsSquareArray := proc(n, k) local r, s, i;
if k=0 then 1 else r := [seq(n+1, i=1..k-1)]; s := [seq(1, i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r, s, x); round(evalf(subs(x=1, %), 99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n, k), k=0..6)), n=0..6);
# Peter Luschny, Mar 30 2011
MATHEMATICA
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
CROSSREFS
T(n,n) gives A070227.
Sequence in context: A051012 A064644 A306444 * A248925 A168131 A024462
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 02:53 EDT 2024. Contains 371906 sequences. (Running on oeis4.)