OFFSET
1,4
COMMENTS
This triangle is a refinement of A179525.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
FORMULA
Let F(x,t) = 1 - (1-t)*(1 - (1-x*t) + (1-x*t)*(1-x^2*t) - (1-x*t)*(1-x^2*t)*(1-x^3*t) + ...). Then F(1+x,1+x*t) = 1 + x*t + (t+t^2)*x^2 + (2*t+4*t^2+t^3)*x^3 + (7*t+16*t^2+9*t^3+t^4)*x^4 + ... is conjecturally a generating function for the triangle.
T(n+1,1) = sum {k = 1..n} T(n,k); T(n+1,n) = n^2.
EXAMPLE
Triangle begins
.n\k.|...1.....2.....3.....4.....5
= = = = = = = = = = = = = = = = = =
..1..|...1
..2..|...1.....1
..3..|...2.....4.....1
..4..|...7....16.....9.....1
..5..|..33....83....64....16.....1
..6..|.197...530...486...180....25.....1
...
T(3,2) = 4: there is one 2x2 matrix and three 3x3 matrices with the specified properties:
........1..0..0.....0..1..0.....0..0..1..
1.1.....0..0..1.....0..1..0.....0..1..0..
0.1.....0..0..1.....0..0..1.....0..0..1..
PROG
(PARI) \\ A(n) returns vector of n'th row.
A(n)={ my(rv=if(n==1, [1], vector(n)));
my(M=matrix(2, n, k, s, k==2&&s==1));
\\ M[k, s] is number of configs with s 1's with k+1 on diagonal.
for(r=2, n, M=matrix(r+1, n, k, s, sum(j=0, min(s-1, r-1), binomial(r-1, j) * (if(j>0&&k<=r, M[k, s-j]) + if(j<s-1&&k>1, M[k-1, s-j-1]))));
for(i=1, r, rv[i]+=M[i+1, n])); rv }
for(n=1, 10, print(A(n))); \\ Andrew Howroyd, Oct 10 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Bala, Apr 24 2012
EXTENSIONS
Terms a(23) and beyond from Andrew Howroyd, Oct 10 2017
STATUS
approved