The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182318 List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 2. 27
 1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The prime tower factorization of a number can be recursively defined as follows: the prime tower factorization of 1 is itself; to find the prime tower factorization of an integer n > 1, let n = p_1^e_1 * p_2^e_2 * ... * p_k^e_k be the canonical prime factorization of n, then the prime tower factorization is given by p_1^f_1 * p_2^f_2 * ... * p_k^f_k, where f_i is the prime tower factorization of e_i. An alternative definition: let I(n) be the indicator function for the set of positive integers whose prime tower factorization does not contain a 2. Then I(n) is the multiplicative function satisfying I(p^k) = I(k) for p prime not equal to 2, and I(2^k) = 0. LINKS Rémy Sigrist, Table of n, a(n) for n = 1..10000 Patrick Devlin and Edinah Gnang, Primes Appearing in Prime Tower Factorization, arXiv:1204.5251 [math.NT], 2012-2014. MAPLE # The integer n is in this sequence if and only if # containsPrimeInTower(2, n) returns false containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;   if n <= 1 then return false: end if; if type(n/q, integer) then return true: end if; L := ifactors(n);   for i to nops(L) do currentExponent := L[i];     if containsPrimeInTower(q, currentExponent) then return true: end if   end do;   return false: end proc: MATHEMATICA Select[Range, ! MemberQ[Flatten@ FixedPoint[Map[If[PrimeQ@ Last@ # || Last@ # == 1, #, {First@ #, FactorInteger@ Last@ #}] &, #, {Depth@ # - 2}] &, FactorInteger@ #], 2] &] (* Michael De Vlieger, Feb 17 2017 *) containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True] ]; L = FactorInteger[n]; For[i = 1, i <= Length[L], i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]]; Select[Range, !containsPrimeInTower[2, #]&] (* Jean-François Alcover, Jan 22 2019, translated from Maple *) CROSSREFS Sequence in context: A320056 A175679 A088828 * A247424 A305635 A334420 Adjacent sequences:  A182315 A182316 A182317 * A182319 A182320 A182321 KEYWORD nonn AUTHOR Patrick Devlin, Apr 24 2012 EXTENSIONS Typo in Maple program corrected by Rémy Sigrist, Dec 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 10:29 EDT 2020. Contains 335721 sequences. (Running on oeis4.)