|
|
A182316
|
|
a(n) = binomial(n^2 + 3*n, n) / (n+1)^2.
|
|
2
|
|
|
1, 1, 5, 51, 819, 18278, 527085, 18730855, 793542167, 39113958819, 2201663313200, 139461523272085, 9824294829146550, 762188806010669820, 64595315110014533629, 5939055918736259991759, 588894813538193130767295, 62651281502108852275337225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = < PF_n, PF_n >, where PF_n is the parking function symmetric function and <,> denotes the usual scalar product on symmetric functions (proved). - Richard Stanley, Sep 24 2015
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..339
|
|
FORMULA
|
a(n) = [x^n] 1/(1-x)^((n+1)^2) / (n+1)^2 ; that is, a(n) equals the coefficient of x^n in 1/(1-x)^((n+1)^2) divided by (n+1)^2.
|
|
MAPLE
|
A182316:=n->binomial(n^2 + 3*n, n) / (n+1)^2: seq(A182316(n), n=0..20); # Wesley Ivan Hurt, Feb 11 2017
|
|
PROG
|
(PARI) {a(n)=binomial((n+1)^2+n-1, n)/(n+1)^2}
for(n=0, 20, print1(a(n), ", "))
|
|
CROSSREFS
|
Cf. A143669.
Sequence in context: A234290 A107669 A218675 * A077392 A193444 A243242
Adjacent sequences: A182313 A182314 A182315 * A182317 A182318 A182319
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul D. Hanna, Apr 24 2012
|
|
STATUS
|
approved
|
|
|
|