login
A182059
Triangle, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1
1, 0, 2, 0, 4, 4, 0, 6, 12, 8, 0, 8, 24, 32, 16, 0, 10, 40, 80, 80, 32, 0, 12, 60, 160, 240, 192, 64, 0, 14, 84, 280, 560, 672, 448, 128, 0, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
OFFSET
0,3
COMMENTS
Row sums are 3^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+2*x)^n - 1 + 0^n .
FORMULA
G.f.: (1-2*x+x^2+2*y*x^2)/(1-2*x-2*y*x+x^2+2*y*x^2).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = T(2,2) = 4 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A206735(n,k)*2^k.
T(n,k) = A013609(n,k) - A073424(n,k) .
EXAMPLE
Triangle begins :
1
0, 2
0, 4, 4
0, 6, 12, 8
0, 8, 24, 32, 16
0, 10, 40, 80, 80, 32
0, 12, 60, 160, 240, 192, 64
0, 14, 84, 280, 560, 672, 448, 128
0, 16, 112, 448, 1120, 1792, 1792, 1024, 256
0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
0, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 09 2012
STATUS
approved