OFFSET
0,5
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = (1+x)^n - 1 + 0^n.
T(n,0) = 0^n = A000007(n), T(n,k) = binomial(n,k) for k>0.
G.f.: (1-2*x+(1+y)*x^2)/(1-2x+(1+y)*x^2-y*x).
EXAMPLE
Triangle begins :
1
0, 1
0, 2, 1
0, 3, 3, 1
0, 4, 6, 4, 1
0, 5, 10, 10, 5, 1
0, 6, 15, 20, 15, 6, 1
0, 7, 21, 35, 35, 21, 7, 1
0, 8, 28, 56, 70, 56, 28, 8, 1
0, 9, 36, 84, 126, 126, 84, 36, 9, 1
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Feb 11 2012
STATUS
approved