login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181944
Number of convex quadrilaterals, distinct up to congruence, on an n X n grid (or geoboard).
5
0, 1, 12, 89, 407, 1413, 3894, 9431, 20212, 39847, 73177, 127582, 211012, 337186, 519594, 777447, 1134269, 1620415, 2264873, 3114709, 4209184, 5609209, 7378581, 9594611, 12326333, 15688198, 19779188, 24721601, 30646522, 37727553, 46093734, 55983150, 67558997
OFFSET
1,3
LINKS
Lucas A. Brown, Python program.
Eric Weisstein's World of Mathematics, Convex Polygon.
Eric Weisstein's World of Mathematics, Quadrilateral.
EXAMPLE
a(1) = 0 because the 1 X 1 grid has no quadrilaterals.
a(2) = 1 because the 2 X 2 grid has one quadrilateral.
a(3) = 9 because the 3 X 3 grid has 12 congruence classes of quadrilaterals, out of 70 quadrilaterals total:
+-------+-------+-------+-------+
| . . . | . o . | . . . | . o . |
| o o . | o . . | o . o | o . . |
| o o . | o o . | o . o | o . o |
+-------+-------+-------+-------+
| . . o | o . o | . o . | . o . |
| o . . | . . . | o o . | o . o |
| o . o | o . o | o . . | o . . |
+-------+-------+-------+-------+
| . o o | . . o | . o . | . . o |
| o . . | o . o | o . o | o . . |
| o . . | o . . | . o . | o o . |
+-------+-------+-------+-------+
CROSSREFS
Cf. A189413.
Sequence in context: A009657 A012088 A083825 * A359311 A193285 A199558
KEYWORD
nonn
AUTHOR
Martin Renner, Apr 03 2012
EXTENSIONS
a(7)-a(33) from Lucas A. Brown, Feb 06 2024
STATUS
approved