login
A181946
Number of kites, distinct up to congruence, on an n X n grid (or geoboard).
2
0, 1, 4, 11, 25, 45, 81, 121, 188, 261, 368, 469, 641, 785, 1000, 1220, 1520, 1767, 2161, 2471, 2961, 3396, 3946, 4403, 5164, 5744, 6517, 7227, 8201, 8936, 10122, 10963, 12240, 13312, 14649, 15839, 17607, 18813, 20482, 21983, 24111, 25589, 27920, 29550, 31979
OFFSET
1,3
COMMENTS
Only convex kites are counted, not concave kites (sometimes called darts or arrowheads).
LINKS
Lucas A. Brown, Python program.
Eric Weisstein's World of Mathematics, Kite.
EXAMPLE
a(1) = 0 because the 1 X 1 grid has no kites.
a(2) = 1 because the 2 X 2 grid has one kite.
a(3) = 4 because the 3 X 3 grid has 4 congruence classes of kites, out of 10 kites total:
+-------+-------+-------+-------+
| . . . | o . o | . . o | . o . |
| o o . | . . . | o . . | o . o |
| o o . | o . o | o o . | . o . |
+-------+-------+-------+-------+
CROSSREFS
Sequence in context: A349569 A349570 A192597 * A176959 A115294 A110610
KEYWORD
nonn
AUTHOR
Martin Renner, Apr 03 2012
EXTENSIONS
a(7)-a(45) from Lucas A. Brown, Feb 08 2024
STATUS
approved