login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181371 Triangle read by rows: T(n,k) is the number of ternary words (i.e., finite sequences of 0's, 1's and 2's) of length n having k occurrences of 01's (0 <= k <= floor(n/2)). 1
1, 3, 8, 1, 21, 6, 55, 25, 1, 144, 90, 9, 377, 300, 51, 1, 987, 954, 234, 12, 2584, 2939, 951, 86, 1, 6765, 8850, 3573, 480, 15, 17711, 26195, 12707, 2305, 130, 1, 46368, 76500, 43398, 10008, 855, 18, 121393, 221016, 143682, 40426, 4740, 183, 1, 317811 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row n contains 1 + floor(n/2) entries.

Sum of entries in row n is 3^n = A000244(n).

T(n,0) = F(2n+2) = A001906(n+1) (even-subscripted Fibonacci numbers).

T(n,1) = A001871(n-2).

Sum_{k>=0}k*T(n,k) = (n-1)*3^(n-2) = A027471(n) (n>=1).

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.

FORMULA

G.f. = G(t,z) = 1/(1 - 3z + z^2 - tz^2).

EXAMPLE

T(3,1)=6 because we have 010, 011, 012, 001, 101 and 201.

T(4,2)=1 because we have 0101.

Triangle starts:

    1;

    3;

    8,  1;

   21,  6;

   55, 25,  1;

  144, 90,  9;

MAPLE

G := 1/(1-3*z+z^2-t*z^2): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

CROSSREFS

Cf. A000244, A001871, A001906, A027471.

Sequence in context: A197725 A288875 A152230 * A118357 A278866 A281287

Adjacent sequences:  A181368 A181369 A181370 * A181372 A181373 A181374

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Oct 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 17:16 EDT 2020. Contains 337291 sequences. (Running on oeis4.)