login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118357 Triangle read by rows: T(n,k) is the number of ternary sequences of length n containing k subsequences 00 (n>=0, 0<=k<=max(0,n-1)). 1
1, 3, 8, 1, 22, 4, 1, 60, 16, 4, 1, 164, 56, 18, 4, 1, 448, 188, 68, 20, 4, 1, 1224, 608, 248, 80, 22, 4, 1, 3344, 1920, 864, 312, 92, 24, 4, 1, 9136, 5952, 2928, 1152, 380, 104, 26, 4, 1, 24960, 18192, 9696, 4128, 1472, 452, 116, 28, 4, 1, 68192, 54976, 31536, 14400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of entries in row n is 3^n (A000244). T(n,0) = A028859(n). T(n,1) = A073388(n-2). Sum(k*T(n,k),k=0..n-1) = (n-1)*3^(n-2) (A027471).

LINKS

Alois P. Heinz, n = 0..141, flattened

FORMULA

G.f.: G-1, where G = G(t,z) = [1+(1-t)z]/[1-(2+t)z-2(1-t)z^2]. G.f. of column k is z^(k+1)*(1-2z)^(k-1)/(1-2z-2z^2)^(k+1) (k>=1).

EXAMPLE

T(4,2) = 4 because we have 0001, 0002, 1000 and 2000.

Triangle starts:

1;

3;

8,1;

22,4,1;

60,16,4,1;

MAPLE

G:=(1+(1-t)*z)/(1-(2+t)*z-2*(1-t)*z^2): Gser:=simplify(series(G, z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: 1; for n from 1 to 12 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form

MATHEMATICA

nn=15; a=1/(1-2x); b=x/(1-y x)+1; f[list_]:=Select[list, #>0&]; Map[f, CoefficientList[Series[a b/(1-2x^2/((1-y x)(1-2x))), {x, 0, nn}], {x, y}]]//Grid  (* Geoffrey Critzer, Nov 19 2012 *)

CROSSREFS

Cf. A000244, A028859, A073388, A027471.

Sequence in context: A288875 A152230 A181371 * A278866 A281287 A278859

Adjacent sequences:  A118354 A118355 A118356 * A118358 A118359 A118360

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, May 24 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 18:43 EDT 2020. Contains 334762 sequences. (Running on oeis4.)