OFFSET
0,2
COMMENTS
These are the denominators of the Bernoulli median numbers (see A212196). - Peter Luschny, May 04 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = denominator((-1)^n/Pi^(2*n)*integral((log(t/(1-t))*log(1-1/t))^n dt,t=0,1)). - [Gerry Martens, May 25 2011]
a(n) = Denominator(Sum_{k=0..n} C(n,k)*Bern(n+k)). - Vladimir Kruchinin, Apr 06 2015
MAPLE
seq(denom(add(binomial(n, k)*bernoulli(n+k), k=0..n)), n=0..100); # Robert Israel, Jun 02 2015
MATHEMATICA
Table[Denominator[Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]], {n, 1, 18}]
max = 25; t[0] = Table[BernoulliB[n], {n, 0, 2*max}]; t[n_] := Differences[t[0], n]; a[n_] := t[n][[n + 1]] // Denominator; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jul 25 2013, after Peter Luschny *)
PROG
(Sage) # uses[BernoulliMedian_list from A212196]
def A181131_list(n):
return [denominator(q) for q in BernoulliMedian_list(n)]
# Peter Luschny, May 04 2012
(PARI) a(n)=denominator(-subst(intformal(polylog(-n, -x)^2), 'x, 0)) \\ Charles R Greathouse IV, Jul 21 2014
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Vladimir Reshetnikov, Jan 23 2011
EXTENSIONS
Offset set to 0, a(0) and a(19)..a(25) added by Peter Luschny, May 04 2012
STATUS
approved