login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181130 Numerator of Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]. 5
1, 2, 8, 8, 32, 6112, 3712, 362624, 71706112, 3341113856, 79665268736, 1090547664896, 38770843648, 106053090598912, 5507347586961932288, 136847762542978039808, 45309996254420664320, 3447910579774800362340352 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

(-1)^n*a(n) is the numerator on the main diagonal of the (truncated) array described in A168516. - Paul Curtz, Jun 20 2011

These are - up to signs -  the numerators of the Bernoulli median numbers (see A212196). - Peter Luschny, May 04 2012

LINKS

Table of n, a(n) for n=1..18.

Peter Luschny, The computation and asymptotics of the Bernoulli numbers.

FORMULA

a(n) = numerator((-1)^n/Pi^(2*n)*integral((log(t/(1-t))*log(1-1/t))^n dt,t=0,1)). - [Gerry Martens, May 25 2011]

MAPLE

seq(numer((-1)^n*add(binomial(n, k)*bernoulli(n+k), k=0..n)), n=1..30); # Robert Israel, Jun 02 2015

MATHEMATICA

Table[Numerator[Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]], {n, 1, 18}]

PROG

(Sage) # BernoulliMedian_list is defined in A212196.

def A181130_list(n) : return map(numerator, BernoulliMedian_list(n))

# Peter Luschny, May 04 2012

(PARI) a(n)=(-1)^n*sum(k=0, n, binomial(n, k)*bernfrac(n+k)) \\ Charles R Greathouse IV, Jun 03 2015

CROSSREFS

Cf. A181131 (denominator), A212196.

Sequence in context: A230739 A227326 A064231 * A212196 A156052 A170923

Adjacent sequences:  A181127 A181128 A181129 * A181131 A181132 A181133

KEYWORD

nonn,frac

AUTHOR

Vladimir Reshetnikov, Jan 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 17:07 EST 2018. Contains 317210 sequences. (Running on oeis4.)