OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the corner and side squares (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032.
The sequence above corresponds to 56 red queen vectors, i.e. A[5] vector, with decimal values between 7 and 448. The central squares lead for these vectors to A180036.
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5} containing no subwords 00, 11 and 22. - Milan Janjic, Jan 31 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 17.
Index entries for linear recurrences with constant coefficients, signature (5, 3).
FORMULA
G.f.: (1+x)/(1-5*x-3*x^2).
a(n) = 5*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+A)*A^(-n-1)+(7+B)*B^(-n-1))/37 with A = (-5+sqrt(37))/6 and B = (-5-sqrt(37))/6.
a(n) = Sum_{k, 0<=k<=n} A202396(n,k)*2^k. - Philippe Deléham, Dec 21 2011
MAPLE
with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [0, 0, 0, 0, 0, 0, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{5, 3}, {1, 6}, 50] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved