login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015536 Expansion of x/(1-5*x-3*x^2). 14
0, 1, 5, 28, 155, 859, 4760, 26377, 146165, 809956, 4488275, 24871243, 137821040, 763718929, 4232057765, 23451445612, 129953401355, 720121343611, 3990466922120, 22112698641433, 122534893973525, 679012565791924, 3762667510880195, 20850375251776747 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is the Lucas sequence U(5,-3). [Bruno Berselli, Jan 09 2013]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (5,3).

FORMULA

a(n) = 5*a(n-1) + 3*a(n-2) with n>1, a(0)=0, a(1)=1.

a(n) = (5/2+sqrt(37)/2)^n/sqrt(37)-(5/2-sqrt(37)/2)^n/sqrt(37); a(n) = sum(k=0..floor((n-1)/2), binomial(n-k-1, k)3^k*5^(n-2k-1). - Paul Barry, Jul 20 2004

MATHEMATICA

Join[{a=0, b=1}, Table[c=5*b+3*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011*)

LinearRecurrence[{5, 3}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)

PROG

(Sage) [lucas_number1(n, 5, -3) for n in xrange(0, 22)]# [From Zerinvary Lajos, Apr 24 2009]

(MAGMA) [n le 2 select n-1 else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012

CROSSREFS

Sequence in context: A126699 A267828 A164537 * A271808 A005785 A027912

Adjacent sequences:  A015533 A015534 A015535 * A015537 A015538 A015539

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 16:10 EST 2016. Contains 278985 sequences.