OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values varying between 23 and 464. The corner and side squares lead for these vectors to A154244.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (6,-2).
FORMULA
G.f.: (1-2*x)/(1 - 6*x + 2*x^2).
a(n) = 6*a(n-1) - 2*a(n-2) with a(0) = 1 and a(1) = 4.
a(n) = ((1+4*A)*A^(-n-1) + (1+4*B)*B^(-n-1))/14 with A = (3+sqrt(7))/2 and B = (3-sqrt(7))/2.
MAPLE
with(LinearAlgebra): nmax:=21; m:=5; A[5]:= [0, 0, 0, 0, 1, 0, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{6, -2}, {1, 4}, 50] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 4]; [n le 2 select I[n] else 6*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved