login
A179374
Decimal expansion of the central angle in degrees corresponding to a circular segment with area r^2 of a circle with radius r.
6
1, 4, 6, 3, 4, 4, 6, 4, 8, 1, 4, 6, 9, 5, 8, 4, 2, 8, 3, 6, 4, 7, 3, 2, 1, 1, 5, 0, 0, 8, 0, 2, 2, 4, 4, 5, 1, 3, 1, 6, 6, 9, 0, 9, 6, 2, 6, 5, 2, 6, 3, 4, 5, 0, 0, 0, 9, 5, 8, 8, 5, 7, 6, 5, 9, 1, 4, 8, 8, 5, 7, 3, 7, 8, 8, 1, 1, 9, 1, 9, 2, 4, 8, 4, 4, 2, 4, 5, 1, 5, 8, 9, 5, 3, 3, 0, 9, 2, 6, 4, 3, 4, 9, 5, 7
OFFSET
3,2
COMMENTS
The arc length of the circular segment/sector is r*A179373. The area of the circular segment, r^2, is 1/Pi (A049541) times the area of the circle. The area of the sector is (r^2)*(A179373/2) = (r^2)*(1 + A179378). See references and cross-references for other relationships.
REFERENCES
S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 7.
LINKS
Eric Weisstein's World of Mathematics, Circular Segment.
FORMULA
Equals A179373*180/Pi = A179373*A072097.
EXAMPLE
146.3446481469584283647321150080224451316690962652634500095885765914885737881...
MATHEMATICA
RealDigits[(180/Pi)*(x /.FindRoot[x-Sin[x]-2, {x, 2}, WorkingPrecision -> 200]), 10, 100][[1]] (* G. C. Greubel, Nov 16 2018 *)
PROG
(PARI) (solve(x=0, Pi, x-sin(x)-2))*180/Pi
CROSSREFS
Cf. A179373 (same, in radians), A179375 (for chord length), A179376 (for "cap height", height of segment), A179377 (for triangle height), A179378 (for triangle area), A049541.
Sequence in context: A200365 A198121 A244020 * A081709 A200640 A179453
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Jul 11 2010
STATUS
approved