This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049541 Decimal expansion of 1/Pi. 76
 3, 1, 8, 3, 0, 9, 8, 8, 6, 1, 8, 3, 7, 9, 0, 6, 7, 1, 5, 3, 7, 7, 6, 7, 5, 2, 6, 7, 4, 5, 0, 2, 8, 7, 2, 4, 0, 6, 8, 9, 1, 9, 2, 9, 1, 4, 8, 0, 9, 1, 2, 8, 9, 7, 4, 9, 5, 3, 3, 4, 6, 8, 8, 1, 1, 7, 7, 9, 3, 5, 9, 5, 2, 6, 8, 4, 5, 3, 0, 7, 0, 1, 8, 0, 2, 2, 7, 6, 0, 5, 5, 3, 2, 5, 0, 6, 1, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The ratio of the volume of a regular octahedron to the volume of the circumscribed sphere (which has circumradius a*sqrt(2)/2 = a*A010503, where a is the octahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A165952, A165953 and A165954. - Rick L. Shepherd, Oct 01 2009 REFERENCES J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Baasel, p. 245. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, p. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64. [From Mohammad K. Azarian, Feb 08 2009] J. Borwein, Ramanujan's Sum Heng Huat Chan, Shaun Cooper and Wen-Chin Liaw, The Rogers-Ramanujan continued fraction and a quintic iteration for 1/Pi, Proc. Amer. Math. Soc. 135 (2007), 3417-3424. J. Guillera, A New Method to Obtain Series for 1/Pi and 1/Pi^2, Experimental Mathematics, Volume 15, Issue 1, 2006. R. Matsumoto, Ramanujan Type Series [Broken link] A. S. Nimbran, Deriving Forsyth-Glaisher type series for 1/π and Catalan’s constant by an elementary method, The Mathematics Student, Indian Math. Soc., Vol. 84, Nos. 1-2, Jan.-June (2015), 69-86. Eric W. Weisstein, Octahedron FORMULA Equals 1/(12-16*A002162)*Sum_{n>=0} A002894(n)*H(n)/(A001025(n) * A016754(n-1)), where H(n) denotes the n-th harmonic number. - John M. Campbell, Aug 28 2016 1/Pi = Sum_{m>=0} binomial(2*m, m)^2*(42*m+5)/(2^(12*m+4)), Ramanujan, from the J.-P. Delahaye reference. - Wolfdieter Lang, Sep 18 2018 EXAMPLE 0.3183098861837906715377675267450287240689192914809128974953... MAPLE Digits:=100: evalf(1/Pi); # Wesley Ivan Hurt, Aug 29 2016 MATHEMATICA RealDigits[N[1/Pi, 6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *) PROG (PARI) 1/Pi \\ Charles R Greathouse IV, Jun 16 2011 (MATLAB) 1/pi \\ Altug Alkan, Apr 10 2016 (MAGMA) R:= RealField(100); 1/Pi(R); // G. C. Greubel, Aug 21 2018 CROSSREFS Cf. A000796, A165922, A165952, A165953, A165954, A063723, A010503. - Rick L. Shepherd, Oct 01 2009 Cf. A088538 (4/Pi). Sequence in context: A293975 A185452 A179449 * A249757 A207609 A130300 Adjacent sequences:  A049538 A049539 A049540 * A049542 A049543 A049544 KEYWORD nonn,cons,changed AUTHOR N. J. A. Sloane, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 21:12 EDT 2018. Contains 315425 sequences. (Running on oeis4.)