login
A198121
Decimal expansion of greatest x having 2*x^2-3x=-cos(x).
3
1, 4, 6, 3, 3, 6, 2, 8, 2, 7, 2, 9, 6, 4, 3, 1, 1, 4, 5, 1, 0, 5, 2, 9, 6, 4, 2, 6, 1, 6, 1, 3, 5, 8, 7, 0, 6, 9, 1, 8, 2, 7, 7, 3, 2, 5, 2, 2, 4, 4, 1, 4, 1, 2, 6, 9, 7, 2, 5, 8, 6, 5, 5, 2, 8, 2, 5, 0, 0, 0, 9, 8, 5, 6, 6, 1, 6, 1, 2, 6, 5, 6, 7, 7, 4, 7, 4, 2, 9, 8, 4, 9, 2, 8, 9, 7, 3, 8, 4
OFFSET
1,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.423418867436956390254901914567137...
greatest x: 1.4633628272964311451052964261613...
MATHEMATICA
a = 2; b = -3; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]
RealDigits[r1](* A198120 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r2](* A198121 *)
CROSSREFS
Cf. A197737.
Sequence in context: A016492 A213080 A200365 * A244020 A179374 A081709
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved