login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179290
Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.
31
1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
OFFSET
1,3
COMMENTS
Regular icosahedron: A three-dimensional figure with 20 congruent equilateral triangle faces, 12 vertices, and 30 edges.
Shorter diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
The length of the shorter side of a golden rectangle inscribed in a unit circle. - Michal Paulovic, Sep 01 2022
The side length of a square inscribed within a golden ellipse with a unit semi-major axis. - Amiram Eldar, Oct 02 2022
LINKS
J. Brandts, S. Korotov, M. Krizek, and J. Solc, On nonobtuse simplicial partitions, Siam Rev. 51 (2) (2009) 317-335.
Eric Weisstein's World of Mathematics, Golden Rhombus.
Eric Weisstein's World of Mathematics, Icosahedron.
Wikipedia, Icosahedron.
FORMULA
Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio Graciá Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
EXAMPLE
1.051462224238267212051338169695753214570995864486683563057871046482422...
MAPLE
evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
MATHEMATICA
RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
PROG
(Python)
from decimal import *
getcontext().prec = 110
c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5)))
print([int(i) for i in str(c) if i != '.'])
# Karl V. Keller, Jr., Jul 10 2020
(PARI) sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
CROSSREFS
Cf. A179290 (longer golden rhombus diagonal).
Sequence in context: A200022 A216157 A216851 * A342014 A355953 A167864
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 02 2011
STATUS
approved