login
A179287
Matrix inverse of A179286.
3
1, 0, 1, -1, 0, 1, -1, 0, 0, 1, -2, -2, 1, 0, 1, -1, 0, -2, 1, 0, 1, -2, -2, 0, -1, 1, 0, 1, -2, 0, -1, 0, -1, 1, 0, 1, -2, -2, 1, -2, 1, -1, 1, 0, 1, -1, 1, -3, 2, -2, 1, -1, 1, 0, 1, -2, -2, -1, -1, 1, -1, 1, -1, 1, 0, 1, -2, -1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 1, -3, -2, 2, -4, 1, -2, 2, -1
OFFSET
1,11
COMMENTS
We can replace the second column in A179285 (first column of A179286) with (A_eps)*n^(1/2+eps) where n=0,1,2,3... and still get the Mertens function in the first column of this array. This proves nothing though because the second column in A179285 can be any sequence (beginning with a zero) of real random numbers.
EXAMPLE
Triangle begins:
1,
0,1,
-1,0,1,
-1,0,0,1,
-2,-2,1,0,1,
-1,0,-2,1,0,1,
-2,-2,0,-1,1,0,1,
-2,0,-1,0,-1,1,0,1,
-2,-2,1,-2,1,-1,1,0,1,
-1,1,-3,2,-2,1,-1,1,0,1,
-2,-2,-1,-1,1,-1,1,-1,1,0,1,
-2,-1,-1,-1,-1,1,-1,1,-1,1,0,1,
CROSSREFS
Cf. A179285, A179286, A002321 (first column of this triangle).
Sequence in context: A111407 A374065 A084440 * A016372 A016342 A016385
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, Jul 09 2010, Jul 17 2010
STATUS
approved