This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179259 Arises in covering a graph by forests and a matching. 1
 2, 12, 52, 140, 294, 532, 872, 1332, 1930, 2684, 3612, 4732, 6062, 7620, 9424, 11492, 13842, 16492, 19460, 22764, 26422, 30452, 34872, 39700, 44954, 50652, 56812, 63452, 70590, 78244, 86432, 95172, 104482, 114380, 124884, 136012, 147782 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Kaiser proves that for any positive integer k and for epsilson = 1/((k+2)(3k^2+1)), the edges of any graph whose fractional arboricity is at most k + epsilon can be decomposed into \$k\$ forests and a matching. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tomas Kaiser, Mickael Montassier, Andre Raspaud, Covering a graph by forests and a matching, Jul 02, 2010. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (n+2)*(3*n^2+1). G.f.: -2*(-1-2*x-8*x^2+2*x^3)/(x-1)^4. a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). a(n) = 0 (mod 2). [From R. J. Mathar, Jul 08 2010] EXAMPLE a(4) = (4+2)*(3*4^2+1) = 294. MATHEMATICA CoefficientList[Series[-2*(-1-2*x-8*x^2+2*x^3)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 04 2012 *) LinearRecurrence[{4, -6, 4, -1}, {2, 12, 52, 140}, 40] (* Harvey P. Dale, Apr 01 2019 *) PROG (MAGMA) I:=[2, 12, 52, 140]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012 CROSSREFS Sequence in context: A043007 A300572 A176580 * A261474 A080675 A218782 Adjacent sequences:  A179256 A179257 A179258 * A179260 A179261 A179262 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jul 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 02:54 EDT 2019. Contains 328244 sequences. (Running on oeis4.)