This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080675 a(n) = (5*4^n - 8)/6. 6
 2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..170 Index entries for linear recurrences with constant coefficients, signature (5, -4). FORMULA a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - Harvey P. Dale, Oct 16 2012 MATHEMATICA (5*4^Range[30]-8)/6 (* or *) LinearRecurrence[{5, -4}, {2, 12}, 30] (* Harvey P. Dale, Oct 16 2012 *) PROG (MAGMA) [(5*4^n-8)/6: n in [1..40] ]; // Vincenzo Librandi, Apr 28 2011 (PARI) a(n)=(5*4^n-8)/6 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229. Sequence in context: A176580 A179259 A261474 * A218782 A007225 A139046 Adjacent sequences:  A080672 A080673 A080674 * A080676 A080677 A080678 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 02 2003 EXTENSIONS Further comments added by Antti Karttunen, Sep 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)