

A080675


a(n) = (5*4^n  8)/6.


6



2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the nth term has a binary expansion 1(10){n1}0, that is, there are n1 10's between the most significant 1 and the least significant 0.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..170
Index entries for linear recurrences with constant coefficients, signature (5, 4).


FORMULA

a(1)=2, a(2)=12, a(n)=5*a(n1)4*a(n2).  Harvey P. Dale, Oct 16 2012


MATHEMATICA

(5*4^Range[30]8)/6 (* or *) LinearRecurrence[{5, 4}, {2, 12}, 30] (* Harvey P. Dale, Oct 16 2012 *)


PROG

(MAGMA) [(5*4^n8)/6: n in [1..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=(5*4^n8)/6 \\ Charles R Greathouse IV, Oct 07 2015


CROSSREFS

a(n) = A072197(n1)  1 = A014486(A106191(n)). a(n) = A079946(A020988(n2)) for n>=2. Cf. also A122229.
Sequence in context: A176580 A179259 A261474 * A218782 A007225 A139046
Adjacent sequences: A080672 A080673 A080674 * A080676 A080677 A080678


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Mar 02 2003


EXTENSIONS

Further comments added by Antti Karttunen, Sep 14 2006


STATUS

approved



