login
A179261
Continued fraction expansion of the connective constant of the honeycomb lattice.
1
1, 1, 5, 1, 1, 3, 6, 1, 3, 3, 10, 10, 1, 1, 1, 5, 2, 3, 1, 1, 3, 6, 1, 8, 74, 2, 1, 2, 4, 2, 4, 3, 5, 9, 4, 3, 1, 1, 1, 2, 1, 17, 6, 1, 2, 12, 1, 1, 1, 2, 1, 24, 1, 2, 1, 2, 9, 989, 2, 13, 1, 5, 1, 1, 1, 64, 2, 2, 1, 1, 9, 1, 3, 1, 1, 1, 2, 3, 11, 2, 3, 1, 10, 16, 2, 1, 2, 6, 4, 2, 3, 3, 3, 4, 1, 151, 1, 4, 1
OFFSET
0,3
COMMENTS
Essentially the same as A154740 because the associated constants obey 1/A154739 = A179260. - R. J. Mathar, Jul 11 2010
REFERENCES
N. Madras and G. Slade, Self-avoiding walks, Probability and its Applications. Birkhäuser Boston, Inc. Boston, MA (1993).
LINKS
Hugo Duminil-Copin and Stanislav Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt2), arXiv:1007.0575 [math-ph], 2010-2011.
G. Lawler, O. Schramm and W. Werner, On the scaling limit of planar self-avoiding walk, arXiv:math/0204277 [math.PR], 2002.
B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49 (1982), 1062-1065.
EXAMPLE
1.8477590650225735... = 1 + 1/1+ 1/5+ 1/1+ 1/1+ 1/3+ 1/6+ 1/1+ 1/3+ 1/3+ 1/10+ 1/10+.
MATHEMATICA
ContinuedFraction[Sqrt[2 + Sqrt[2]], 100] (* Paolo Xausa, Aug 07 2024 *)
PROG
(PARI) contfrac(sqrt(2+sqrt(2))) \\ Michel Marcus, Mar 17 2018
CROSSREFS
Cf. A002193, A179260 (decimal expansion).
Sequence in context: A073050 A366426 A154740 * A154567 A260210 A139391
KEYWORD
cofr,nonn
AUTHOR
Jonathan Vos Post, Jul 06 2010
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved