OFFSET
0,1
COMMENTS
For the numerators see A128052.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,18,0,0,-1).
FORMULA
From Colin Barker, Jun 27 2013: (Start)
G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)).
a(n) = 18*a(n-3)-a(n-6). (End)
From Greg Dresden, Oct 16 2021: (Start)
a(3*n) = 2*Fibonacci(6*n+1),
a(3*n+1) = 2*Fibonacci(6*n+3),
a(3*n+2) = Fibonacci(6*n+5). (End)
MAPLE
MATHEMATICA
Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3],
Fibonacci[6 n + 5]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
LinearRecurrence[{0, 0, 18, 0, 0, -1}, {2, 4, 5, 26, 68, 89}, 30] (* Harvey P. Dale, Oct 08 2024 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Johannes W. Meijer, Jul 01 2010
STATUS
approved