This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179049 Odd-even partitions: number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is odd. 5
 1, 1, 0, 2, 0, 2, 1, 3, 1, 3, 3, 4, 4, 4, 6, 6, 8, 6, 12, 8, 14, 10, 19, 13, 23, 16, 29, 21, 35, 26, 43, 34, 50, 43, 61, 54, 72, 67, 85, 84, 100, 103, 119, 126, 138, 155, 163, 186, 191, 224, 224, 268, 263, 319, 308, 378, 360, 447, 422, 523, 494, 614, 576, 716, 674, 833, 787, 964, 917, 1118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Parts are odd, even, odd, even, ...  [Joerg Arndt, Oct 27 2012] LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 G. E. Andrews, Ramanujan’s “lost” notebook. IV. Stacks and alternating parity in partitions, Adv. in Math. 53 (1984), no. 1, 55-74. Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017. FORMULA G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n, 1-x^(2*k) ) ). a(n) ~ 1/(2*sqrt(5)*n^(3/4))*exp(Pi*sqrt(n/5)) [Jang 2017]. - Peter Bala, Mar 28 2017 EXAMPLE From Joerg Arndt, Oct 27 2012:  (Start) The a(20) = 14 such partitions of 20 are: [ 1]  1 2 3 14 [ 2]  1 2 5 12 [ 3]  1 2 7 10 [ 4]  1 2 17 [ 5]  1 4 5 10 [ 6]  1 4 7 8 [ 7]  1 4 15 [ 8]  1 6 13 [ 9]  1 8 11 [10]  3 4 5 8 [11]  3 4 13 [12]  3 6 11 [13]  3 8 9 [14]  5 6 9 (End) MAPLE b:= proc(n, i, t) option remember; `if`(n=0, irem(t, 2),       `if`(i<1, 0, b(n, i-1, t)+`if`(i<=n and irem(i, 2)<>t,        b(n-i, i-1, irem(i, 2)), 0)))     end: a:= n-> `if`(n=0, 1, add(b(n-i, i-1, irem(i, 2)), i=1..n)): seq(a(n), n=0..100);  #  Alois P. Heinz, Nov 08 2012 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n==0, Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *) PROG (Sage) def A179049(n): ....odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x)) ....satisfies = lambda p: not p or (min(p) % 2 == 1 and odd_diffs(p)) ....return Partitions(n, max_slope=-1).filter(satisfies).cardinality() # D. S. McNeil, Jan 04 2011_ (PARI) N=99; x='x+O('x^N); Vec(sum(n=0, N, x^(n*(n+1)/2)/prod(k=1, n, 1-x^(2*k)))) CROSSREFS Cf. A000009. Cf. A218355 (parts are even, odd, even, odd, ...). Sequence in context: A025803 A029185 A029184 * A029221 A029183 A213423 Adjacent sequences:  A179046 A179047 A179048 * A179050 A179051 A179052 KEYWORD nonn,easy AUTHOR Joerg Arndt, Jan 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.