login
A178978
a(n) = A144448(n+1)/8.
2
0, 2, 5, 1, 14, 20, 1, 35, 44, 2, 65, 77, 10, 104, 119, 5, 152, 170, 7, 209, 230, 28, 275, 299, 4, 350, 377, 5, 434, 464, 55, 527, 560, 22, 629, 665, 26, 740, 779, 91, 860, 902, 35, 989, 1034, 40, 1127, 1175, 136, 1274, 1325, 17
OFFSET
0,2
COMMENTS
Differs from A178971 for indices n > 23.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
Trisections:
a(3*n) = A145911(n);
a(3*n+1) = A145910(n);
a(3*n+2) = A178977(n).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
MAPLE
A061039 := proc(n) numer(1/9-1/n^2) ; end proc:
A144448 := proc(n) A061039(1+2*n) ; end proc:
A178978 := proc(n) A144448(n+1)/8 ; end proc:
seq(A178978(n), n=0..80) ; # R. J. Mathar, Jan 06 2011
MATHEMATICA
Table[Numerator[1/9 -1/(2*n+3)^2]/8, {n, 0, 75}] (* G. C. Greubel, Mar 06 2022 *)
PROG
(Sage) [numerator(1/9 -1/(2*n+3)^2)/8 for n in (0..75)] # G. C. Greubel, Mar 06 2022
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Jan 02 2011
STATUS
approved