This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178979 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the shortest block has length k (1<=k<=n). 1
 1, 1, 1, 4, 0, 1, 11, 3, 0, 1, 41, 10, 0, 0, 1, 162, 30, 10, 0, 0, 1, 715, 126, 35, 0, 0, 0, 1, 3425, 623, 56, 35, 0, 0, 0, 1, 17722, 2934, 364, 126, 0, 0, 0, 0, 1, 98253, 15165, 2220, 210, 126, 0, 0, 0, 0, 1, 580317, 86900, 10560, 330, 462, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Row sums are Bell numbers A000110. Column 1 is A000296 (shifted). - Contributions: Sum_{k>1} T(n,k) = A000296(n) count the set partitions with blocks of size > 1. T(n,1) = A000296(n-1) count the set partitions with blocks of size = 1. Thus for the Bell numbers A000110(n) = Sum_{k>=1} T(n,k) = A000296(n-1) + A000296(n). - Peter Luschny, Apr 05 2011 LINKS Alois P. Heinz, Rows n = 1..141, flattened Peter Luschny, Set partitions FORMULA E.g.f. for column k: exp((exp(x) - Sum_{i=0..k-1} x^i/i!)) - exp((exp(x) - Sum_{i=0..k} x^i/i!)). EXAMPLE T(4,2) = card ({12|34, 13|24, 14|23}) = 3. - Peter Luschny, Apr 05 2011 Triangle begins: 1 1,     1 4,     0,  1 11,    3,  0,  1 41,   10,  0,  0,  1 162,  30, 10,  0,  0,  1 715, 126, 35,  0,  0,  0,  1 MAPLE g := k-> exp(x)*(1-(GAMMA(k, x)/GAMMA(k))); egf := k-> exp(g(k))-exp(g(k+1)); T := (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n): seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, Apr 05 2011 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,        add(b(n-i*j, i+1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))     end: T:= (n, k)-> b(n, k) -b(n, k+1): seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 25 2016 MATHEMATICA a[k_]:= Exp[x]-Sum[x^i/i!, {i, 0, k}]; Transpose[Table[Range[20]! Rest[CoefficientList[Series[Exp[a[k-1]]-Exp[a[k]], {x, 0, 20}], x]], {k, 1, 9}]]//Grid CROSSREFS Cf. A145877, A000110, A000296. Sequence in context: A121301 A059056 A127153 * A228270 A266488 A189355 Adjacent sequences:  A178976 A178977 A178978 * A178980 A178981 A178982 KEYWORD nonn,tabl AUTHOR Geoffrey Critzer, Jan 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 15:03 EST 2018. Contains 318049 sequences. (Running on oeis4.)