login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178514 Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having genus k (see first comment for definition of genus). 5
0, 1, 0, 1, 1, 0, 3, 6, 0, 0, 6, 30, 8, 0, 0, 15, 130, 120, 0, 0, 0, 36, 525, 1113, 180, 0, 0, 0, 91, 2016, 8078, 4648, 0, 0, 0, 0, 232, 7476, 50316, 67408, 8064, 0, 0, 0, 0, 603, 27000, 281862, 719640, 305856, 0, 0, 0, 0, 0, 1585, 95535, 1459920, 6298930, 6223800, 604800, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q.

The sum of the entries in row n is A000166(n) (the derangement numbers).

The number of entries in row n is ceil(n/2).

T(n,0)=A005043(n) (the Riordan numbers).

REFERENCES

S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.

LINKS

Table of n, a(n) for n=1..62.

EXAMPLE

T(3,1)=1 because 312 is the only derangement of {1,2,3} with genus 1. Indeed, we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1, while for the other derangement of {1,2,3}, q=231=(123), we have cq'=231*312=123=(1)(2)(3) and so g(q)=(1/2)(3+1-1-3)=0.

Triangle starts:

[ 1]  0,

[ 2]  1, 0,

[ 3]  1, 1, 0,

[ 4]  3, 6, 0, 0,

[ 5]  6, 30, 8, 0, 0,

[ 6]  15, 130, 120, 0, 0, 0,

[ 7]  36, 525, 1113, 180, 0, 0, 0,

[ 8]  91, 2016, 8078, 4648, 0, 0, 0, 0,

[ 9]  232, 7476, 50316, 67408, 8064, 0, 0, 0, 0,

[10]  603, 27000, 281862, 719640, 305856, 0, 0, 0, 0, 0,

[11]  1585, 95535, 1459920, 6298930, 6223800, 604800, 0, 0, 0, 0, 0,

[12]  4213, 332530, 7117902, 47851540, 90052336, 30856320, 0, 0, 0, 0, 0, 0,

...

MAPLE

n := 7: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: nrcyc := proc (p) local pc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: DER := {}: for i to factorial(n) do if nrfp(P[i]) = 0 then DER := `union`(DER, {P[i]}) else end if end do: f[n] := sort(add(t^gen(DER[j]), j = 1 .. nops(DER))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries of the specified row n

CROSSREFS

Cf. A177267.

Cf. A000166, A005043.

Sequence in context: A068635 A156695 A175645 * A154924 A071105 A218113

Adjacent sequences:  A178511 A178512 A178513 * A178515 A178516 A178517

KEYWORD

nonn,hard,tabl

AUTHOR

Emeric Deutsch, May 29 2010

EXTENSIONS

Terms beyond row 7 from Joerg Arndt, Nov 01 2012.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 01:49 EST 2018. Contains 318049 sequences. (Running on oeis4.)