login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177267 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having genus k (see first comment for definition of genus). 6
1, 2, 0, 5, 1, 0, 14, 10, 0, 0, 42, 70, 8, 0, 0, 132, 420, 168, 0, 0, 0, 429, 2310, 2121, 180, 0, 0, 0, 1430, 12012, 20790, 6088, 0, 0, 0, 0, 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, 0, 0, 0, 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q.

The sum of the entries in row n is n!.

The number of entries in row n is floor((n+1)/2).

T(n,0)=A000108(n) (the Catalan numbers).

Apparently T(n,1)=A002802(n-3).

Last nonzero terms in rows with odd n appear to be A060593. [Joerg Arndt, Nov 01 2012.]

REFERENCES

S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.

LINKS

Table of n, a(n) for n=1..73.

EXAMPLE

T(3,1)=1 because 312 is the only permutation of {1,2,3} with genus 1 (we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1).

Triangle starts:

[ 1]  1,

[ 2]  2, 0,

[ 3]  5, 1, 0,

[ 4]  14, 10, 0, 0,

[ 5]  42, 70, 8, 0, 0,

[ 6]  132, 420, 168, 0, 0, 0,

[ 7]  429, 2310, 2121, 180, 0, 0, 0,

[ 8]  1430, 12012, 20790, 6088, 0, 0, 0, 0,

[ 9]  4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0,

[10]  16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0,

[11]  58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, ...,

[12]  208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0, ...,

[13]  742900, 29745716, 368588220, 1700309468, 2788065280, 1271140416, 68428800, 0, ...,

...

MAPLE

n := 8: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n

CROSSREFS

Cf. A178514 (genus of derangements), A178515 (genus of involutions), A178516 (genus of up-down permutations), A178517 (genus of non-derangement permutations), A178518 (permutations of [n] having genus 0 and p(1)=k), A185209 (genus of connected permutations), A218538 (genus of permutations avoiding [x,x+1]).

Cf. A000108, A002802

Sequence in context: A202209 A201730 A188449 * A188445 A246723 A198926

Adjacent sequences:  A177264 A177265 A177266 * A177268 A177269 A177270

KEYWORD

nonn,hard,tabl

AUTHOR

Emeric Deutsch, May 27 2010

EXTENSIONS

Definition corrected by Emeric Deutsch, May 29 2010

Terms for rows 12 and 13 from Joerg Arndt, Jan 24 2011.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 22:02 EDT 2017. Contains 284182 sequences.