

A177055


Numbers k such that each decimal digit is a quadratic nonresidue modulo k.


1



22, 25, 26, 32, 35, 36, 38, 52, 53, 56, 63, 65, 66, 72, 75, 76, 77, 78, 85, 88, 222, 225, 228, 232, 235, 236, 237, 252, 255, 256, 258, 262, 266, 267, 268, 272, 273, 275, 276, 282, 283, 285, 286, 288, 323, 325, 332, 333, 335, 336, 352, 353, 357, 368, 372, 375, 376, 377, 385, 387, 522, 523, 525, 528, 532, 533, 535, 536
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The digits 0,1,4,9 are squares, so no members of the sequence have those digits.  Robert Israel, Apr 03 2017


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

75 is in the sequence because neither 7 nor 5 is a square mod 75.  Corrected by Robert Israel, Apr 03 2017


MAPLE

isA177055 := proc(n) local d; for d in convert(n, base, 10) do if numtheory[quadres](d, n) <> 1 then return false; end if; end do; return true; end proc:
for n from 1 to 140 do if isA177055(n) then printf("%d, ", n) ; end if ; end do: # R. J. Mathar, Dec 12 2010


CROSSREFS

Sequence in context: A061411 A053779 A177734 * A186780 A034304 A167459
Adjacent sequences: A177052 A177053 A177054 * A177056 A177057 A177058


KEYWORD

nonn,base,less


AUTHOR

Michel Lagneau, Dec 09 2010


STATUS

approved



