|
|
A167459
|
|
Composite numbers in A166504, i.e., whose decimal expansion can be split up into prime numbers, with leading zeros allowed.
|
|
2
|
|
|
22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 112, 115, 117, 132, 133, 135, 172, 175, 177, 192, 195, 202, 203, 205, 207, 213, 217, 219, 222, 225, 231, 232, 235, 237, 243, 247, 252, 253, 255, 259, 261, 267, 272, 273, 275, 279, 289, 292, 295, 297, 302, 303
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
In contrast to A066737 (which is a subsequence of this one), we allow for leading zeros in the "prime" substrings; the two sequences differ from n=24 on, with a(24)=202 which is not in A066737.
Sequence A166505 gives the difference, A167459 \ A066737 = A166504 \ A152242. Sequence A167458 gives the indices of the terms not in A066737.
|
|
LINKS
|
Table of n, a(n) for n=1..54.
|
|
FORMULA
|
A167459 = A002808 n A166504, where "n" means intersection.
A167459 \ A066737 = A166504 \ A152242.
|
|
PROG
|
(PARI) is_A167459(n) = !isprime(n) & is_A166504(n)
|
|
CROSSREFS
|
Cf. A002808, A066737, A121609, A166504, A167505.
Sequence in context: A177055 A186780 A034304 * A066737 A121609 A092631
Adjacent sequences: A167456 A167457 A167458 * A167460 A167461 A167462
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
M. F. Hasler, Nov 19 2009
|
|
STATUS
|
approved
|
|
|
|