|
|
A177058
|
|
n^3 - 3n^2 + 3.
|
|
2
|
|
|
3, 1, -1, 3, 19, 53, 111, 199, 323, 489, 703, 971, 1299, 1693, 2159, 2703, 3331, 4049, 4863, 5779, 6803, 7941, 9199, 10583, 12099, 13753, 15551, 17499, 19603, 21869, 24303, 26911, 29699, 32673, 35839, 39203, 42771, 46549, 50543, 54759, 59203
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
For n>2, fourth diagonal of A162611.
|
|
LINKS
|
B. Berselli, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
Contribution from Bruno Berselli, Jun 04 2010: (Start)
G.f.: (3-11*x+13*x^2+x^3)/(1-x)^4.
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0, with n>3.
a(n)+a(n-1) = 2*A081438(n-3), with n>2. (End)
G.f.: 3+x+x^2*G(0) where G(k)= 1 - x*(k+1)*(k+1)*(k+4)/(1 - 1/(1 - (k+1)*(k+1)*(k+4)/G(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
|
|
MATHEMATICA
|
Table[n^3-3n^2+3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {3, 1, -1, 3}, 50] (* Harvey P. Dale, May 15 2020 *)
|
|
PROG
|
(PARI) a(n)=n^3-3*n^2+3 \\ Charles R Greathouse IV, Jan 11 2012
|
|
CROSSREFS
|
Cf. A162611, A081438.
Sequence in context: A245537 A277198 A242735 * A176921 A000503 A254864
Adjacent sequences: A177055 A177056 A177057 * A177059 A177060 A177061
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Vincenzo Librandi, May 27 2010
|
|
STATUS
|
approved
|
|
|
|