This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176328 Numerators of the rational sequence with e.g.f. (x/2)*(exp(-x) + 1)/(exp(x) - 1). 11
 1, -1, 7, -3, 59, -5, 127, -7, 119, -9, 335, -11, 15689, -13, 49, -15, 463, -17, 51049, -19, -171311, -21, 856031, -23, -236331331, -25, 8553181, -27, -23749448849, -29, 8615841490835, -31, -7709321033057, -33, 2577687858469 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Numerator of the n-term of the inverse binomial transform of the modified Bernoulli sequence A176327(k)/A027642(k). The sequence of modified Bernoulli numbers A176327(k)/A027642(k) is defined to be the same as the Bernoulli sequence, except the term at index k=1 which is zero. Its inverse binomial transform is 1, -1, 7/6, -3/2, 59/30, -5/2, 127/42, -7/2, 119/30, -9/2, 335/66, -11/2, ...; the numerators define this sequence here. LINKS FORMULA Conjecture: a(2*n+1) = -2*n-1. a(n) = numerator((-1)^n*(bernoulli(n, 1) + bernoulli(n, 2))/2. - Peter Luschny, Jun 17 2012 (-1)^n*a(n) are the numerators of the polynomials generated by cosh(x*z)*z/(1-exp(-z)) evaluated x=1 (see the example section). The denominators of these values are A141056. - Peter Luschny, Aug 18 2018 EXAMPLE The first few of the polynomials mentioned in the formula section are: 1, 1/2, 1/6 + x^2, (3/2)*x^2, -1/30 + x^2 + x^4, (5/2)*x^4, 1/42 - (1/2)*x^2 +(5/2)*x^4 + x^6, (7/2)*x^6, -1/30 + (2/3)*x^2 - (7/3)*x^4 + (14/3)*x^6 + x^8, (9/2)*x^8, ...  The values of these polynomials at x=1 start 1, 1/2, 7/6, 3/2, 59/30, 5/2, 127/42, 7/2, ... - Peter Luschny, Aug 18 2018 MAPLE read("transforms") ; evb := [1, 0, seq(bernoulli(n), n=2..50)] ; BINOMIALi(evb) ; apply(numer, %) ; # R. J. Mathar, Dec 01 2010 seq(numer((-1)^n*(bernoulli(n, 1)+bernoulli(n, 2))/2), n=0..34); # Peter Luschny, Jun 17 2012 gf := cosh(x*z)*z/(1-exp(-z)): ser := series(gf, z, 35): seq((-1)^n*numer(subs(x=1, n!*coeff(ser, z, n))), n=0..34); # Peter Luschny, Aug 19 2018 MATHEMATICA terms = 35; egf = (x/2)*((Exp[-x] + 1)/(Exp[x] - 1)) + O[x]^(terms); CoefficientList[egf, x]*Range[0, terms-1]! // Numerator (* Jean-François Alcover, Jun 13 2017 *) PROG (PARI) my(x = 'x + O('x^50)); apply(x->numerator(x), Vec(serlaplace((x/2)*(exp(-x) + 1)/(exp(x) - 1)))) \\ Michel Marcus, Aug 19 2018 CROSSREFS Cf. A176591 (denominators), A141056 (denominators for the unsigned variant). Sequence in context: A272010 A145758 A038269 * A248279 A183421 A173443 Adjacent sequences:  A176325 A176326 A176327 * A176329 A176330 A176331 KEYWORD frac,sign AUTHOR Paul Curtz, Apr 15 2010 EXTENSIONS Apparently incorrect claims concerning the inverse binomial transform of the B_n removed by R. J. Mathar, Dec 01 2010 New name from Peter Luschny, Jun 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:57 EDT 2019. Contains 328345 sequences. (Running on oeis4.)