login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176327 Numerators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)). 15
1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Numerator of the Bernoulli number B_n, except B(1)=0.

A027641 is the main entry for this sequence, which is only a minor variation. - N. J. A. Sloane, Nov 29 2010.

This could formally be defined by building the arithmetic mean of the numerators in A164555(n) and A027641(n).

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..200

FORMULA

a(2n+1)  = 0. a(2n ) = A000367(n).

a(n) = A164555(n) = A027641(n) if n <>1.

MAPLE

seq(numer((bernoulli(i, 0)+bernoulli(i, 1))/2), i=0..40); # Peter Luschny, Jun 17 2012

MATHEMATICA

terms = 41; egf = (x/2)*((1 + Exp[-x])/(1 - Exp[-x])) + O[x]^(terms+1);

CoefficientList[egf, x]*Range[0, terms-1]! // Numerator (* Jean-Fran├žois Alcover, Jun 13 2017 *)

PROG

(PARI) apply(numerator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017

CROSSREFS

Cf. A176289 (denominators), A027642, A141056, A164020, A165823

Sequence in context: A036946 A027641 A164555 * A226156 A215616 A249737

Adjacent sequences:  A176324 A176325 A176326 * A176328 A176329 A176330

KEYWORD

sign

AUTHOR

Paul Curtz, Apr 15 2010

EXTENSIONS

New name from Peter Luschny, Jun 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 18 11:29 EST 2017. Contains 296144 sequences.