This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176327 Numerators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)). 15
 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Numerator of the Bernoulli number B_n, except B(1)=0. A027641 is the main entry for this sequence, which is only a minor variation. - N. J. A. Sloane, Nov 29 2010. This could formally be defined by building the arithmetic mean of the numerators in A164555(n) and A027641(n). LINKS Antti Karttunen, Table of n, a(n) for n = 0..200 FORMULA a(2n+1)  = 0. a(2n ) = A000367(n). a(n) = A164555(n) = A027641(n) if n <>1. MAPLE seq(numer((bernoulli(i, 0)+bernoulli(i, 1))/2), i=0..40); # Peter Luschny, Jun 17 2012 MATHEMATICA terms = 41; egf = (x/2)*((1 + Exp[-x])/(1 - Exp[-x])) + O[x]^(terms+1); CoefficientList[egf, x]*Range[0, terms-1]! // Numerator (* Jean-François Alcover, Jun 13 2017 *) PROG (PARI) apply(numerator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017 CROSSREFS Cf. A176289 (denominators), A027642, A141056, A164020, A165823 Sequence in context: A036946 A027641 A164555 * A226156 A215616 A249737 Adjacent sequences:  A176324 A176325 A176326 * A176328 A176329 A176330 KEYWORD sign AUTHOR Paul Curtz, Apr 15 2010 EXTENSIONS New name from Peter Luschny, Jun 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.