login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176591 Bernoulli denominators A141056(n), with the exception a(1)=1. 11
1, 1, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686, 2, 140100870, 2, 6, 2, 30, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

These are also the denominators of a sequence generated by inverse binomial transform of a modified Bernoulli sequence described in (with numerators in) A176328.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..4096

FORMULA

a(n) = A141056(n), n <> 1.

a(n) = A027760(n), n>1.

a(2n) = A002445(n), a(2n+1)= A040000(n).

MAPLE

read("transforms") ; evb := [1, 0, seq(bernoulli(n), n=2..50)] ; BINOMIALi(evb) ; apply(denom, %) ; # R. J. Mathar, Dec 01 2010

seq(denom((bernoulli(i, 1)+bernoulli(i, 2))/2), i=0..50); # Peter Luschny, Jun 17 2012

MATHEMATICA

a[n_] := If[OddQ[n], 2, BernoulliB[n] // Denominator]; a[1] = 1; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Dec 29 2012 *)

Join[{1, 1}, BernoulliB[Range[2, 80]]/.(0->1/2)//Denominator] (* Harvey P. Dale, Dec 31 2018 *)

PROG

(PARI) A176591(n) = { my(p=1); if(n>1, fordiv(n, d, my(r=d+1); if(isprime(r), p = p*r))); return(p); }; \\ Antti Karttunen, Dec 20 2018, after code in A141056

CROSSREFS

Cf. A141056, A160014.

Sequence in context: A305874 A176965 A084249 * A191703 A096039 A201229

Adjacent sequences:  A176588 A176589 A176590 * A176592 A176593 A176594

KEYWORD

nonn,frac

AUTHOR

Paul Curtz, Apr 21 2010

EXTENSIONS

More terms from Antti Karttunen, Dec 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 08:31 EDT 2019. Contains 327127 sequences. (Running on oeis4.)