

A175472


Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ 1,0]


2



5, 0, 4, 0, 8, 3, 0, 0, 8, 2, 6, 4, 4, 5, 5, 4, 0, 9, 2, 5, 8, 2, 6, 9, 3, 0, 4, 5, 3, 3, 3, 0, 2, 4, 9, 8, 9, 5, 5, 3, 8, 5, 1, 8, 2, 3, 6, 8, 5, 7, 9, 8, 4, 5, 1, 7, 7, 2, 6, 9, 5, 8, 4, 5, 0, 9, 5, 9, 3, 8, 3, 3, 7, 1, 3, 4, 7, 8, 8, 6, 4, 6, 2, 5, 6, 4, 4, 7, 9, 3, 8, 1, 5, 1, 3, 6, 5, 2, 5, 4, 6, 8, 0, 1, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Also the location of the zero of the digamma function in the same interval.


LINKS

Table of n, a(n) for n=0..104.
Anonymous, Particular values of the Gamma Function, Wikipedia.
E. Weisstein, Gamma Function, MathWorld.


EXAMPLE

Gamma(0.5040830082644554092582693045...) = 3.5446436111550050891219639933..


MATHEMATICA

x /. FindRoot[ PolyGamma[0, x] == 0, {x, 1/2}, WorkingPrecision > 105] // Abs // RealDigits // First (* JeanFrançois Alcover, Jan 21 2013 *)


PROG

(PARI) solve(x=.5, .6, psi(x)) \\ Charles R Greathouse IV, Jul 19 2013


CROSSREFS

Cf. A030169, A030171, A175473, A175474.
Sequence in context: A076266 A200102 A016581 * A099220 A229174 A021956
Adjacent sequences: A175469 A175470 A175471 * A175473 A175474 A175475


KEYWORD

cons,nonn


AUTHOR

R. J. Mathar, May 25 2010


STATUS

approved



