login
A175472
Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -1,0]
15
5, 0, 4, 0, 8, 3, 0, 0, 8, 2, 6, 4, 4, 5, 5, 4, 0, 9, 2, 5, 8, 2, 6, 9, 3, 0, 4, 5, 3, 3, 3, 0, 2, 4, 9, 8, 9, 5, 5, 3, 8, 5, 1, 8, 2, 3, 6, 8, 5, 7, 9, 8, 4, 5, 1, 7, 7, 2, 6, 9, 5, 8, 4, 5, 0, 9, 5, 9, 3, 8, 3, 3, 7, 1, 3, 4, 7, 8, 8, 6, 4, 6, 2, 5, 6, 4, 4, 7, 9, 3, 8, 1, 5, 1, 3, 6, 5, 2, 5, 4, 6, 8, 0, 1, 9
OFFSET
0,1
COMMENTS
Also the location of the zero of the digamma function in the same interval.
LINKS
EXAMPLE
Gamma(-0.5040830082644554092582693045...) = -3.5446436111550050891219639933..
MATHEMATICA
x /. FindRoot[ PolyGamma[0, x] == 0, {x, -1/2}, WorkingPrecision -> 105] // Abs // RealDigits // First (* Jean-François Alcover, Jan 21 2013 *)
PROG
(PARI) solve(x=.5, .6, psi(-x)) \\ Charles R Greathouse IV, Jul 19 2013
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, May 25 2010
STATUS
approved