login
A175474
Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -3,-2].
10
2, 6, 1, 0, 7, 2, 0, 8, 6, 8, 4, 4, 4, 1, 4, 4, 6, 5, 0, 0, 0, 1, 5, 3, 7, 7, 1, 5, 7, 1, 8, 7, 2, 4, 2, 0, 7, 9, 5, 1, 0, 7, 4, 0, 1, 0, 8, 7, 3, 4, 8, 0, 2, 4, 4, 1, 9, 0, 6, 5, 0, 8, 7, 5, 6, 0, 3, 7, 5, 7, 4, 7, 3, 3, 1, 3, 8, 3, 8, 6, 3, 7, 5, 6, 5, 3, 6, 1, 5, 4, 9, 6, 2, 5, 2, 7, 0, 7, 1, 1, 9, 5, 9, 8, 3
OFFSET
1,1
COMMENTS
Also the location of the zero of the digamma function in the same interval.
EXAMPLE
Gamma(-2.6107208684441446500015377157..) = -0.8881363584012419200955280294..
MATHEMATICA
x /. FindRoot[ PolyGamma[0, x] == 0, {x, -5/2}, WorkingPrecision -> 105] // Abs // RealDigits // First (* Jean-François Alcover, Jan 21 2013 *)
PROG
(PARI) solve(x=2.6, 2.7, psi(-x)) \\ Charles R Greathouse IV, Jul 19 2013
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, May 25 2010
STATUS
approved