|
|
A030171
|
|
Decimal expansion of real number y such that y = Gamma(x) is a minimum.
|
|
15
|
|
|
8, 8, 5, 6, 0, 3, 1, 9, 4, 4, 1, 0, 8, 8, 8, 7, 0, 0, 2, 7, 8, 8, 1, 5, 9, 0, 0, 5, 8, 2, 5, 8, 8, 7, 3, 3, 2, 0, 7, 9, 5, 1, 5, 3, 3, 6, 6, 9, 9, 0, 3, 4, 4, 8, 8, 7, 1, 2, 0, 0, 1, 6, 5, 8, 7, 5, 1, 3, 6, 2, 2, 7, 4, 1, 7, 3, 9, 6, 3, 4, 6, 6, 6, 4, 7, 9, 8, 2, 8, 0, 2, 1, 4, 2, 0, 3, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..5000
Simon Plouffe, Minimal point of GAMMA(x)
Simon Plouffe, Minimal y of GAMMA(x)
Eric Weisstein's World of Mathematics, Gamma Function
|
|
EXAMPLE
|
0.885603194410888700278815900582588733207951533669903448871200165875136...
|
|
MAPLE
|
Digits:=500; x0:=fsolve(Psi(x)=0, x); evalf(GAMMA(x0), 120) # Iaroslav V. Blagouchine, Feb 16 2016
|
|
MATHEMATICA
|
First@ RealDigits[ FindMinimum[ Gamma[x], {x, 1.4}, WorkingPrecision -> 2^7][[1]]] (* Robert G. Wilson v, Aug 03 2010 *)
RealDigits[ Gamma[x /. FindRoot[ PolyGamma[0, x] == 0, {x, 1}, WorkingPrecision -> 100]]][[1]] (* Jean-François Alcover, Oct 23 2012 *)
|
|
PROG
|
(PARI) gamma(solve(x=1, 2, psi(x))) \\ Charles R Greathouse IV, Apr 17 2015
|
|
CROSSREFS
|
Cf. A030169 for value of x.
Sequence in context: A305208 A081799 A154186 * A153619 A202497 A195708
Adjacent sequences: A030168 A030169 A030170 * A030172 A030173 A030174
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|