This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175287 Partial sums of ceiling(n^2/4). 3
 0, 1, 2, 5, 9, 16, 25, 38, 54, 75, 100, 131, 167, 210, 259, 316, 380, 453, 534, 625, 725, 836, 957, 1090, 1234, 1391, 1560, 1743, 1939, 2150, 2375, 2616, 2872, 3145, 3434, 3741, 4065, 4408, 4769, 5150, 5550, 5971, 6412, 6875, 7359, 7866, 8395, 8948, 9524, 10125, 10750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A004652. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5. Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1). FORMULA a(n) = round((2*n+1)*(2*n^2+2*n+9)/48). a(n) = floor((n+1)*(2*n^2+n+9)/24). a(n) = ceiling((2*n^3+3*n^2+10*n)/24). a(n) = round((2*n^3+3*n^2+10*n)/24). a(n) = a(n-4)+n^2-3*n+5 , n>3. G.f.: x*(1-x+x^2) / ( (1+x)*(x-1)^4 ). a(n) = (2*n*(2*n^2+3*n+10)-9*(-1)^n+9)/48. - Bruno Berselli, Dec 03 2010 EXAMPLE a(4) = ceil(0/4)+ceil(1/4)+ceil(4/4)+ceil(9/4)+ceil(16/4) = 0+1+1+3+4=9. MAPLE a:= n-> round((2*n^(3)+3*n^(2)+10*n)/24): seq(a(n), n=0..20); MATHEMATICA Table[Sum[Ceiling[i^2/4], {i, 0, n}], {n, 0, 49}] (* or *) Table[(2n(2n^2 + 3n + 10) -9(-1)^n + 9)/48, {n, 0, 49}] (* Alonso del Arte, Dec 03 2010 *) CoefficientList[Series[(x^3 - x^2 + x)/(x^5 - 3 x^4 + 2 x^3 + 2 x^2 - 3 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *) Accumulate[Ceiling[Range[0, 50]^2/4]] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 2, 5, 9}, 60] (* Harvey P. Dale, Nov 19 2014 *) PROG (MAGMA) [Floor((n+1)*(2*n^2+n+9)/24): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011 (PARI) x='x+O('x^99); concat(0, Vec((x^3-x^2+x)/ (x^5-3*x^4+2*x^3+2*x^2-3*x+1))) \\ Altug Alkan, Apr 05 2016 CROSSREFS Cf. A004652. Sequence in context: A169740 A282044 A138226 * A284917 A007979 A097701 Adjacent sequences:  A175284 A175285 A175286 * A175288 A175289 A175290 KEYWORD nonn,easy AUTHOR Mircea Merca, Dec 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.