

A175289


Pisano period of A002605 modulo n.


1



1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1, 144, 9, 180, 24, 48, 10, 22, 3, 120, 12, 27, 48, 840, 24, 320, 1, 30, 144, 48, 9, 36, 180, 12, 24, 280, 48, 308, 10, 72, 22, 46, 3, 336, 120, 144, 12, 936, 27, 120, 48, 180, 840, 29, 24, 60, 320, 144, 1, 24, 30, 1122, 144
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(79)=6240 [From John W. Layman, Aug 10 2010]


LINKS

Table of n, a(n) for n=1..68.


EXAMPLE

Reading 0, 1, 2, 6, 16, 44, 120, 328, 896, 2448,.. modulo 12 gives 0, 1, 2, 6, 4, 8, 0, 4, 8, 0, 4, 8 ,.. with period length a(n=12)= 3.


MATHEMATICA

a={1}; For[n=2, n<=80, n++, {x={{0, 1}}; t={1, 1}; While[ !MemberQ[x, t], {xl = x[[ 1]]; AppendTo[x, t]; t={Mod[2*(t[[1]]+xl[[1]]), n], Mod[2*(t[[2]] + xl[[2]]), n]}; }]; p = Flatten[Position[x, t]][[1]]; AppendTo[a, Length[x]  p+1]; }]; Print[a]; [From John W. Layman, Aug 10 2010]


CROSSREFS

Cf. A001175, A046738, A175181  A175185, A175286.
Sequence in context: A270220 A281377 A138654 * A072271 A193472 A259208
Adjacent sequences: A175286 A175287 A175288 * A175290 A175291 A175292


KEYWORD

nonn


AUTHOR

R. J. Mathar, Mar 24 2010


EXTENSIONS

Terms beyond a(28)=48 from John W. Layman, Aug 10 2010


STATUS

approved



