login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173690
Partial sums of round(n^2/5).
2
0, 0, 1, 3, 6, 11, 18, 28, 41, 57, 77, 101, 130, 164, 203, 248, 299, 357, 422, 494, 574, 662, 759, 865, 980, 1105, 1240, 1386, 1543, 1711, 1891, 2083, 2288, 2506, 2737, 2982, 3241, 3515, 3804, 4108, 4428, 4764, 5117, 5487, 5874, 6279, 6702, 7144, 7605, 8085, 8585
OFFSET
0,4
COMMENTS
Partial sums of A008738.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = Sum_{k=0..n} round(k^2/5);
a(n) = round((2*n^3 + 3*n^2 + n)/30);
a(n) = floor((2*n^3 + 3*n^2 + n + 6)/30);
a(n) = ceiling((2*n^3 + 3*n^2 + n - 6)/30);
a(n) = a(n-5) + (n-2)^2 + 2, n > 4;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8), n > 7.
G.f.: x^2*(x+1)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ).
EXAMPLE
a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11.
MAPLE
A173690 := proc(n) add( round(i^2/5), i=0..n) ; end proc: # R. J. Mathar, Jan 10 2011
MATHEMATICA
Accumulate[Round[Range[0, 50]^2/5]] (* or *) LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {0, 0, 1, 3, 6, 11, 18, 28}, 60] (* Harvey P. Dale, Mar 16 2022 *)
PROG
(PARI) a(n)=(2*n^3+3*n^2+n+6)\30 \\ Charles R Greathouse IV, May 30 2011
CROSSREFS
Cf. A008738.
Sequence in context: A230088 A011849 A350104 * A178855 A095944 A014284
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 25 2010
STATUS
approved