login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173690 Partial sums of round(n^2/5). 2
0, 0, 1, 3, 6, 11, 18, 28, 41, 57, 77, 101, 130, 164, 203, 248, 299, 357, 422, 494, 574, 662, 759, 865, 980, 1105, 1240, 1386, 1543, 1711, 1891, 2083, 2288, 2506, 2737, 2982, 3241, 3515, 3804, 4108, 4428, 4764, 5117, 5487, 5874, 6279, 6702, 7144, 7605, 8085, 8585 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Partial sums of A008738.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).

FORMULA

a(n) = Sum_{k=0..n} round(k^2/5);

a(n) = round((2*n^3 + 3*n^2 + n)/30);

a(n) = floor((2*n^3 + 3*n^2 + n + 6)/30;

a(n) = ceiling((2*n^3 + 3*n^2 + n - 6)/30);

a(n) = a(n-5) + (n-2)^2 + 2, n > 4;

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8), n > 7.

G.f.: x^2*(x+1)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ).

EXAMPLE

a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11.

MAPLE

A173690 := proc(n) add( round(i^2/5), i=0..n) ; end proc: # R. J. Mathar, Jan 10 2011

PROG

(PARI) a(n)=(2*n^3+3*n^2+n+6)\30 \\ Charles R Greathouse IV, May 30 2011

CROSSREFS

Cf. A008738.

Sequence in context: A147456 A230088 A011849 * A178855 A095944 A014284

Adjacent sequences:  A173687 A173688 A173689 * A173691 A173692 A173693

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Nov 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 00:41 EDT 2019. Contains 323427 sequences. (Running on oeis4.)