OFFSET
0,4
COMMENTS
Partial sums of A008738.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
FORMULA
a(n) = Sum_{k=0..n} round(k^2/5);
a(n) = round((2*n^3 + 3*n^2 + n)/30);
a(n) = floor((2*n^3 + 3*n^2 + n + 6)/30);
a(n) = ceiling((2*n^3 + 3*n^2 + n - 6)/30);
a(n) = a(n-5) + (n-2)^2 + 2, n > 4;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8), n > 7.
G.f.: x^2*(x+1)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ).
EXAMPLE
a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11.
MAPLE
A173690 := proc(n) add( round(i^2/5), i=0..n) ; end proc: # R. J. Mathar, Jan 10 2011
MATHEMATICA
Accumulate[Round[Range[0, 50]^2/5]] (* or *) LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {0, 0, 1, 3, 6, 11, 18, 28}, 60] (* Harvey P. Dale, Mar 16 2022 *)
PROG
(PARI) a(n)=(2*n^3+3*n^2+n+6)\30 \\ Charles R Greathouse IV, May 30 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 25 2010
STATUS
approved