login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173691 Partial sums of round(n^2/6). 2
0, 0, 1, 3, 6, 10, 16, 24, 35, 49, 66, 86, 110, 138, 171, 209, 252, 300, 354, 414, 481, 555, 636, 724, 820, 924, 1037, 1159, 1290, 1430, 1580, 1740, 1911, 2093, 2286, 2490, 2706, 2934, 3175, 3429, 3696, 3976, 4270, 4578, 4901, 5239, 5592, 5960, 6344, 6744, 7161 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Partial sums of A056829.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..5000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,1,-3,3,-1).

FORMULA

a(n) = Sum_{k=0..n} round(k^2/6).

a(n) = round((2*n^3 + 3*n^2 + 6*n)/36).

a(n) = round((4*n^3 + 6*n^2 + 12*n + 5)/72).

a(n) = floor((2*n^3 + 3*n^2 + 6*n + 16)/36).

a(n) = ceiling((2*n^3 + 3*n^2 + 6*n - 11)/36).

a(n) = a(n-6) + n^2 - 5*n + 10, n > 5.

G.f.: x^2*(1+x^4)/((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4). - Bruno Berselli, Jan 12 2011

EXAMPLE

a(5) = round(1/6) + round(4/6) + round(9/6) + round(16/6) + round(25/6) = 0 + 1 + 2 + 3 + 4.

Note that 9/6 = 1.5 is rounded up.

MAPLE

a(n):=round((2*n^(3)+3*n^(2)+6*n)/(36))

MATHEMATICA

Accumulate[Round[Range[0, 50]^2/6]] (* or *) LinearRecurrence[{3, -3, 1, 0, 0, 1, -3, 3, -1}, {0, 0, 1, 3, 6, 10, 16, 24, 35}, 60] (* Harvey P. Dale, Jan 08 2014 *)

CoefficientList[Series[x^2(1+x^4)/((1+x)(1-x+x^2)(1+x+x^2)(1-x)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 26 2014 *)

PROG

(MAGMA) [Floor((2*n^3+3*n^2+6*n+16)/36): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011

(PARI) vector(60, n, n--; (16+6*n+3*n^2+2*n^3)\36) \\ G. C. Greubel, Jul 02 2019

(Sage) [floor((16+6*n+3*n^2+2*n^3)/36) for n in (0..60)] # G. C. Greubel, Jul 02 2019

CROSSREFS

Cf. A056829.

Sequence in context: A173653 A122046 A078663 * A280709 A025222 A011902

Adjacent sequences:  A173688 A173689 A173690 * A173692 A173693 A173694

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Nov 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)