login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172221
Number of ways to place 3 nonattacking zebras on a 3 X n board.
4
1, 20, 84, 200, 403, 720, 1180, 1808, 2631, 3676, 4970, 6540, 8413, 10616, 13176, 16120, 19475, 23268, 27526, 32276, 37545, 43360, 49748, 56736, 64351, 72620, 81570, 91228, 101621, 112776, 124720, 137480, 151083, 165556, 180926, 197220
OFFSET
1,2
COMMENTS
Zebra is a (fairy chess) leaper [2,3].
LINKS
FORMULA
a(n) = (9*n^3 - 21*n^2 + 50*n - 48)/2, n>=6.
G.f.: x*(2*x^8-4*x^7+2*x^6-8*x^5+28*x^4-20*x^3+10*x^2+16*x+1)/(x-1)^4. - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[(2 x^8 - 4 x^7 + 2 x^6 - 8 x^5 + 28 x^4 - 20 x^3 + 10 x^2 + 16 x + 1) / (x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
CROSSREFS
Sequence in context: A156389 A044207 A044588 * A006566 A205312 A268888
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
EXTENSIONS
More terms from Vincenzo Librandi, May 28 2013
STATUS
approved